skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Tairan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report a rapid and automated viral plaque assay using time-lapse holographic imaging and deep learning, significantly reducing the detection time needed for traditional viral plaque assays and entirely eliminating staining and manual counting procedures. 
    more » « less
  2. Abstract A plaque assay—the gold-standard method for measuring the concentration of replication-competent lytic virions—requires staining and usually more than 48 h of runtime. Here we show that lens-free holographic imaging and deep learning can be combined to expedite and automate the assay. The compact imaging device captures phase information label-free at a rate of approximately 0.32 gigapixels per hour per well, covers an area of about 30 × 30 mm2and a 10-fold larger dynamic range of virus concentration than standard assays, and quantifies the infected area and the number of plaque-forming units. For the vesicular stomatitis virus, the automated plaque assay detected the first cell-lysing events caused by viral replication as early as 5 h after incubation, and in less than 20 h it detected plaque-forming units at rates higher than 90% at 100% specificity. Furthermore, it reduced the incubation time of the herpes simplex virus type 1 by about 48 h and that of the encephalomyocarditis virus by about 20 h. The stain-free assay should be amenable for use in virology research, vaccine development and clinical diagnosis. 
    more » « less
  3. Deep learning-based virtual staining was developed to introduce image contrast to label-free tissue sections, digitally matching the histological staining, which is time-consuming, labor-intensive, and destructive to tissue. Standard virtual staining requires high autofocusing precision during the whole slide imaging of label-free tissue, which consumes a significant portion of the total imaging time and can lead to tissue photodamage. Here, we introduce a fast virtual staining framework that can stain defocused autofluorescence images of unlabeled tissue, achieving equivalent performance to virtual staining of in-focus label-free images, also saving significant imaging time by lowering the microscope’s autofocusing precision. This framework incorporates a virtual autofocusing neural network to digitally refocus the defocused images and then transforms the refocused images into virtually stained images using a successive network. These cascaded networks form a collaborative inference scheme: the virtual staining model regularizes the virtual autofocusing network through a style loss during the training. To demonstrate the efficacy of this framework, we trained and blindly tested these networks using human lung tissue. Using 4× fewer focus points with 2× lower focusing precision, we successfully transformed the coarsely-focused autofluorescence images into high-quality virtually stained H&E images, matching the standard virtual staining framework that used finely-focused autofluorescence input images. Without sacrificing the staining quality, this framework decreases the total image acquisition time needed for virtual staining of a label-free whole-slide image (WSI) by ~32%, together with a ~89% decrease in the autofocusing time, and has the potential to eliminate the laborious and costly histochemical staining process in pathology. 
    more » « less
  4. Shaked, Natan T.; Hayden, Oliver (Ed.)
    We report label-free, in vivo virtual histology of skin using reflectance confocal microscopy (RCM). We trained a deep neural network to transform in vivo RCM images of unstained skin into virtually stained H&E-like microscopic images with nuclear contrast. This framework successfully generalized to diverse skin conditions, e.g., normal skin, basal cell carcinoma, and melanocytic nevi, as well as distinct skin layers, including the epidermis, dermal-epidermal junction, and superficial dermis layers. This label-free in vivo skin virtual histology framework can be transformative for faster and more accurate diagnosis of malignant skin neoplasms, with the potential to significantly reduce unnecessary skin biopsies. 
    more » « less
  5. We present a deep learning-based technique to computationally transform H&E-stained tissue sections into different special stains. We also demonstrate that this stain-to-stain transformation framework improves diagnostic accuracy over the use of H&E only. 
    more » « less
  6. Volpe, Giovanni; Pereira, Joana B.; Brunner, Daniel; Ozcan, Aydogan (Ed.)
    Reflectance confocal microscopy (RCM) can provide in vivo images of the skin with cellular-level resolution; however, RCM images are grayscale, lack nuclear features and have a low correlation with histology. We present a deep learning-based virtual staining method to perform non-invasive virtual histology of the skin based on in vivo, label-free RCM images. This virtual histology framework revealed successful inference for various skin conditions, such as basal cell carcinoma, also covering distinct skin layers, including epidermis and dermal-epidermal junction. This method can pave the way for faster and more accurate diagnosis of malignant skin neoplasms while reducing unnecessary biopsies. 
    more » « less
  7. We reportin vivovirtual histology of skin without a biopsy, where deep learning is used to virtually stain tissue and generate hematoxylin and eosin (H&E)-like microscopic images of skin using a reflectance confocal microscope. 
    more » « less
  8. Abstract Pathology is practiced by visual inspection of histochemically stained tissue slides. While the hematoxylin and eosin (H&E) stain is most commonly used, special stains can provide additional contrast to different tissue components. Here, we demonstrate the utility of supervised learning-based computational stain transformation from H&E to special stains (Masson’s Trichrome, periodic acid-Schiff and Jones silver stain) using kidney needle core biopsy tissue sections. Based on the evaluation by three renal pathologists, followed by adjudication by a fourth pathologist, we show that the generation of virtual special stains from existing H&E images improves the diagnosis of several non-neoplastic kidney diseases, sampled from 58 unique subjects (P = 0.0095). A second study found that the quality of the computationally generated special stains was statistically equivalent to those which were histochemically stained. This stain-to-stain transformation framework can improve preliminary diagnoses when additional special stains are needed, also providing significant savings in time and cost. 
    more » « less